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Tianshu Liut, K. Kuykendoll*, R. Rhew’ and S .  Jones** 
NASA Langley Research Center 

Hampton, VA 23681 

Abstract . 
This paper describes the avian wing geometry 

(Seagull, Merganser, Teal and Owl) extracted from non- 
contact surface measurements using a three-dimensional 
laser scanner. The geometric quantities, including the 
camber line and thickness distribution of airfoil, wing 
planform, chord distribution, and twist distribution, are 
given in convenient analytical expressions. Thus, the avian 
wing surfaces can be generated and the wing kinematics can 
be simulated. The aerodynamic characteristics of avian 
airfoils in steady inviscid flows are briefly discussed. The 
avian wing kinematics is recovered from videos of three 
level-flying birds (Crane, Seagull and Goose) based on a 
two-jointed arm model. A flapping seagull wing in the 3D 
physical space is re-constructed from the extracted wing 
geometry and kinematics. 

1. Introduction 
Inspired by bird flight, early aviation researchers have 

studied avian wings as the basics of developing man-made 
flight vehicles. This methodology is clearly seen in the work 
of Lilienthal [ l ]  and Magnan [2 ] .  This may be partially the 
reason why early aircraft designers like the Wright brothers 
tended to use thin airfoils by simply simulating bird wings. 
However, this situation was dramatically changed since 
thick airfoils (such as Gottingen and NACA airfoils) 
designed based on theoretical and experimental methods of 
aerodynamics achieved much higher lift-to-drag ratio at 
Reynolds numbers in airplane flight. Thus, study of avian 
wings becomes a marginalized topic that only interests a few 
avian biologists and zoologists. Nachtigall and Wieser [3] 
measured the airfoil sections of a pigeon’s wing. Oehme 
and Kitzler [4] measured the planform of 14 avian wings and 
gave an empirical formula for avian wing planforms. 

Recently, there is renewed interest in low-Reynolds- 
number flight and flapping flight in the aerospace 
community due to the need of developing micro-air-vehicles 
(MAVs). Hence, it is worthwhile to revisit the problem of 
the geometry and aerodynamics of avian wings. In this 
paper, we measure the surface geometry of several avian 
wings using a 3D laser scanning system Based on these 
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measurements, we extract the basic geometrical properties of 
a wing such as the camber line, thickness distribution, 
planform and twist distribution, and generate 3D wing 
surfaces. The aerodynamic performance of the avian wing 
airfoils in steady inviscid flow is calculated in comparison 
with typical low-Reynolds-number airfoils. We explain how 
to recover the avian wing kinematics from videos of a level- 
flying bird. The present paper provides useful data for 
further biomimetic study of low-Reynolds-number wings 
and flapping wings for MAVs. 

2.3D Laser Scanner on FARO Arm 
Figure 1 shows a FARO Arm (FARO Technologies. 

Inc.) to which a NVision’s 3D non-contact laser scanner is 
attached for wing surface measurements. The FARO Arm is 
a high accuracy hand-held mechanical device with an 
exchangeable probe, that is used to measure objects and 
features to create data of a surface. When the NVision 3D 
Scanner is attached and aligned to the ann, the capability of 
acquiring high-density point cloud data of a surface becomes 
available. On the FARO arm, the position of the scanner 
relative to a given coordinate system is known accurately. 
The accuracy of the surface data is within 0.041mm and data 
can be given in the coordinate system chosen. It is the 
fastest, smallest, and lightest hand-held noncontact 
scanning system available. 

Operating with ModelMaker software, the system 
works on the principle of laser stripe triangulation. A laser 
diode and stripe generator is used to project a laser line onto 
the object. The line is viewed at an angle by cameras so that 
height variations in the object can be seen as changes in the 
shape of the line. The resulting captured image of the stripe 
is a profile that contains the shape of the object. The 
software processes video data to capture surface shape in 
real time at over 23,000 points per second. The NVision 
Scanner uses digital camera synchronization to ensure 
precise measurements. It can scan a large variety of 
materials and colors including black, and work in almost any 
lighting conditions. ModelMaker is Windowscompatible 
software that outputs data in a variety of CAD formats. This 
system can generate millions of data points. For illustration, 
Figure 2 shows data cloud of the surface of a seagull wing 
obtained using this system. In this study, we only use a 
subset of data, that is, wing-cross-section data at selected 
spanwise locations. 
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3. Data Processing 
The upper and lower surface of an airfoil are 

expressed as addition and subtraction of the camber line and 

zIower = qC) - z ( ~ ,  , respectively. To extract the mean 
camber line from measurements, we use the Birnbaum- 
Glauert camber line [5] 

thickness distribution, Zupper = z ( c J + z ( f )  and 

where 77 = x / c  is the normalized chordwise coordinate and 
zfc,- is the maximum camber coordinate, and c is the 
local wing chord. The thickness distribution is given by [ 5 ]  

c L n=I  

where qf,- is the maximum thickness coordinate (the 
maximum thickness is 2z,,,-). For a given set of 
measured data of wing contour, a rotation and translation 
transformation is first applied in order that the geometrical 
angle-of-attack becomes zero and the leading edge of the 
wing section is located at the origin of the local coordinate 
system. Therefore, the local wing chord, twist angle, 
z ( ~ ) - ,  z , ~ ) - ,  relative position of the leading and trailing 
edges can be determined. Next, using least-squares 
estimation, we can obtain the coefficients S, and A, in 
Eqs. (1) and ( 2 ) .  These quantities are functions of the 
normalized spanwise coordinate 5 = 2y / b , where bL2 is the 
semi-span of a wing in a sense of the orthographic 
projection. Table 1 shows the averaged coefficients for the 
camber line and thickness distribution for the Seagull, 
Merganser, Teal and Owl wings. Details of how to extract 
these coefficients from measurements are discussed in the 
following sections. 

The chord can be expressed as 

(3) 

where c,, is the root chord of a wing. The function FOK ( 5 ) 
is a correlation given by Oehme and Kitzler [4] for avian 
wings, which is defined as FoK( 5 )  = 1 for 5 E [ O ,  0.51 
and FoK( 5 ) = 45( 1 - 5 ) for 5 E [ 0.5,1] . The correction 
function for the deviation of an individual wing from 

coefficients E ,  are to be determined. Table 2 shows the 
coefficients for the planform of the Seagull, Merganser, Teal 
and Owl wings. The maximum camber line and thickness 
coordinates zfC,- and z , ~ , -  can be described by 

appropriate empirical functions of 5 = 2 y / b . Similarly, the 
relative position and kinematics of the 1/4-chord line of a 
wing to the fixed body coordinate system can be described 

by a dynamical system (xC,,, yc14 ,  zc14 M b / 2 ) = f c 1 4 ( t ) ,  
where t is time. As an approximate model, an avian wing 
can be described as a multiple jointed rigid arm system and 
its kinematics can be determined [6, 71. In this paper, for 
simplicity, we adopt a two-jointed rigid arm system to 
describe the 1/4-chord line of an avian wing rather than 
exactly simulating the more complicated skeleton structure 
of an avian wing. The local twist angle of the airfoil section 
around the 1/4-chord line can be given by 
0 = fe(2x,,, / b ,  2yc, ,  / b ,  2zc14 / b ) .  When the geometric 
and kinematic parameters in the above relations are given, a 
flapping wing can be computationally generated and the 
wing kinematics can be simulated. 

, 

, 

4. Avian Wing Geometry 
4.1. Seagull 

Figure 3 shows a photograph of the Seagull wing used 
for this study. The coefficients S ,  and A, in Eqs. (1) and 
(2) for the camber line and thickness distribution are 
extracted from measurements of the Seagull wing. It is 
found that they do not show the systematic behavior as a 
function of the spanwise location, as shown in Fig. 4. 
Particularly, a considerable variation in A, exists. The 
averaged values of S, along the span in Eq. (1) are 
S I  = 3.8735, S ,  = -0.807 and S, = 0.771 . The averaged 
coefficients A, in Eq. (2) for the thickness distribution are 
A, = -15.246, A, = 26.482, A, = -18.975 and 
A, =4.6232. Figure 5 shows the normalized camber line 
and thickness distribution for the Seagull wing generated by 
using the above averaged coefficients. These distributions 
exhibit the averaged airfoil of the Seagull wing over 
5 = 2y / b = 0.166 -0.772 . For 2 y  / b > 0.772, the 
primaries are separated such that no single, continuous 
airfoil exists. The least-squares estimation residuals in 
fitting local airfoils z , ~ )  / c  and z f f )  / c  at different 
spanwise locations are shown in Fig. 6(a). Similarly, the 
deviations of the averaged z( ) / z( ) mar and z( ) / z( )- 

from the local profiles at different spanwise locations are 
shown in Fig. 6(b). 

As shown in Fig. 7, the maximum camber and 
thickness coordinates qC,- and z ( ,  ,- are functions of the 

spanwise location 5 = 2y / b , which are empirically 

expressed as z(,)- / c  = 0.144 1 + 1.333 ) and 

planform of the Seagull wing. The distribution of the wing 
chord, as shown in Fig. 9, can be described by Eq. (3) that is 
the Oehme and Kitzler's correlation F o K ( 5 )  plus a b 

z(~,- / c  = 0.1/(1+3.546 ) .  Figure 8 shows the ! 

5 

correction function F,,, ( 5  ) = E ,  ( tn+' - tX for local 
n=l 
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variation, where E, = 26.08, E ,  = -209.92, E ,  = 637.21 , E ,  = -323.8, E ,  = 978.7, E,  = -1417.0 and 
E4 = -945.68 and E,  = 695.03. The ratio between the root E, = 1001.0. The ratio between the root chord and semi- 
chord and semi-span is c0 /( b / 2 ) = 0.388. Figure 10 span is co /( b / 2 ) = 0.423. Figure 19 shows the wing twist 
shows the wing twist as a function of the spanwise location, as a function of the spanwise location, which is expressed as 
which is expressed as an expansion of the Chebyshev an expansion of the Chebyshev polynomials ( T I  ={ ,  
polynomials ( T ,  = 5 *  T, = 4 t 3  -35 ,  and T, = 45,  -35 ,  and T, = 16t5 -206, + 56 ), i.e., 

b 

J 

T3 =16c5 -205, +55) ,  i.e., twis t (deg)=x D, T , ( { ) ,  

where D, = 5.2788, D, = -4.1069 and D, = -1.8684. 
Here the positive sign of the twist denotes that the wing 
rotates against the incoming flow. Note that the wing twist 
presented here is not necessarily intrinsic because not only 
the twist may be changed in preparing the wing specimen, 
but also the twist is really a time-dependent variable during 
flapping. Using the above relations obtained from 
measurements, we generate the surface of the Seagull wing 
shown in Fig. 11, where a simple two-jointed arm model is 
used for the l / k h o r d  line. Also, we assume that the airfoil 
section remains the same near the wing tip while the 
maximum thickness decreases even though the real wing has 
separated primaries near the wing tip. 

n=l 

3 

twist (deg) = D,, T, ( 5 ) , where D, = 30.9953, 
n=l 

D, =-3.2438 and D, =-0.2076. Figure 20 shows the 
surface of the Merganser wing generated using the above 
relations. 

4.3. Teal 
Figure 21 shows a photograph of the Teal wing used 

for this study. The averaged values of S, along the span for 
the camber line are S ,  =3.9917, S ,  =-0.3677 and 
S, =0.0239. The averaged coefficients A, for the 
uIIcLIGss UlaUJUUUUll art: A, = i./a&, A, = -i3.6875, 
A, =18.276 and A, =-8.279.  Figure 22 shows the 
normalized camber line and thickness distribution for the 

. -,,,, +I.:, __^^^ A:-.-:L.--.- 

4.2.Merganser Teal wing generated by using the above averaged 
Figure 12 shows a photograph of the Merganser wing coefficients. The least-squares estimation residual in fitting 

used for this study. The coefficients S ,  and A, for the local airfoils Z , c ,  1 C and Z,, J 1 C is less than 0.003. The 
camber line and thickness distribution of the Merganser deviations of the averaged z ( ~ ,  / z ( ~ , -  and z,,, / z,, Jmm 

wing are shown in Fig. 13. The averaged values of sn from the local profiles are less than 0.1 and 0.2, respectively. 
along the span are S ,  =3.9385, S ,  =0.7466 and Figure 23 shows the maximum camber and thickness 

S ,  = 1.840. The averaged coefficients A, for the thickness coordinates Z ( C ) -  and z(r ) n ~ r r  as a function Of the spanwise 
distribution are A, = -23. I743 , A, = 58.3057, location 5 = 2 y / b  along with the empirical expressions 
A, = 4 . 3 6 7 4  and A, =25.7629. Figure 14 shows the ~ , , , , , / c = O . I l / ( l + 4 5 ' . ~ )  and 
normalized camber line and thickness distribution for the z(,,- / ~ = 0 . 0 5 / ( 1 + 4 5 ' . ~  ). Figure 24 shows the 

coefficients. The wing thickness is very small (considered chord is shown in Fig. 25 along with the results given by Eq. 
to be zero) near the trailing edge (dc  > 0.9). The least- (3) where the coefficients in Fco, (5)  are E, =-66.1,  
squares estimation residuals in fitting local airfoils z{,,/c 

E, = 435.6, E,  = -1203, E4 = 1664.1 and E, = -1130.2. 
and z ( , ,  / c  at different spanwise locations are shown in Fig. The ratio between the root chord and semi-span is 
15(a). The deviations of the averaged z(c, / Z, )IMI and c,, /( b / 2 ) = 0.545 . The wing twist is less than 2 degrees 
z, / qt ,  - from the local profiles at different spanwise along the span. Figure 26 shows the surface of the Teal 
locations are shown in Fig. 15(b). wing generated using the above relations. 

Figure 16 shows the maximum camber and thickness 

Merganser wing generared by using the above averaged planform of the Teal wing. The distribution of the wing 

z( ,- / c = 0.14 /( 1 + 1.333 5 ) and S ,  =3.9733, S, =-0.8497 and S ,  =-2.723. The 

z,, Jmru / c = 0.05 / ( I  +4  1.  Figwe 17 shows the averaged coefficients A, for the thickness distribution are 
planform of the Merganser wing. The distribution of the A, =-47.683, A, =124.5329, A, =-127.0874 and 
wing chord is shown in Fig. 18 along with the results given = 45.876 . Figure 28 shows the normalized camber line 
by Eq. (3) where the coefficients in Fcor( 5 )  are E, = 39.1, and thickness distribution for the Owl wing generated by 

4 
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using the above averaged coefficients. The least-squares 
estimation residual in fitting local airfoils z ,  , / c and 

z , ~  / c  is less than 0.006. The deviations of the averaged 

z,, / z , ~  and z ,  ,) / z,, Jnuu from the local profiles are 
less than 0.1 and 0.2, respectively. Interestingly, the Owl 
wing is very thin over x / c = 0.3- 1.0 (it is a single layer of 
the primary feathers) and the thickness distribution is mainly 
concentrated in the front portion of the airfoil. The wing 
thickness is considered to be zero near the trailing edge ( d c  
> 0.9). 

Figure 29 shows the maximum camber and thickness 
coordinates z,,~- and z ~ , , , , , ~  as a function of the spanwise 
location 6 = 2 y  / b along with the empirical expressions 
z ,  ,- / c = 0.04[ 1 + tanh( 1.85 - 0.5 ) I  and 

zf )- / c = 0.04 /( 1 + 1.78 5 ‘ .4 ) . In contrast to other wings 
described before, the maximum chamber coordinate for the 
Owl wing increase along the span. Figure 30 shows the 
planform of the Owl wing. The distribution of the wing 
chord is shown in Fig. 31 along with the results given by Eq. 
(3) where the coefficients in F , , , ( { )  are E, =6.3421, 
E, = -7.51 78, E, = -70.9649, E, = 188.0651 and 
E, =-160.1678. The ratio between the root chord and 
semi-span is co / ( b /  2)=0.677. The wing twist is less 
than 2 degrees along the span. Figure 32 shows the surface 
of the Owl wing generated using the above relations. 

5. Aerodynamic Characteristics of Avian Airfoils in 
Steady Inviscid Flows 

Figure 33 shows typical wing sections of the Seagull, 
Merganser, Teal and Owl at 2y / b = 0.4 . These airfoils are 
highly cambered. The inviscid pressure coefficient C, 
distributions at four angles of attack are shown in Figs. 34, 
35, 36 and 37. Figure 38 shows the sectional lift coefficient 
based on unit chord as a function the angle of attack (AoA) 
for the Seagull, Merganser, Teal and Owl wings. These 
results are obtained by using the inviscidhiscous flow 
analysis code XFOIL for airfoil design [8], which roughly 
indicate the aerodynamic characteristics of these airfoils. 
The pressure distributions on the upper surfaces of the 
Seagull and Merganser wings are relatively flat when AoA is 
less than 5 degrees. The sectional lift coefficients of at zero 
AoA for both are larger than one. Figure 39 shows the 
sectional lift coefficient distributions along the wing span for 
these wings at AoA = 0 degree. Based on the sectional life 
coefficient C ,  , we can estimate the normalized circulation 
distribution r( y ) / ro = [ c( y ) / c0 I [  c1 ( y ) / c , ~  ] shown 
in Fig. 40, where the subscript ‘0’ denotes the value at the 
wing root ( 2y / b = 0 ). The Seagull and Merganser wings 
have the almost same normalized circulation distributions. 
The Owl airfoil is particularly interesting, that is basically a 

thin wing with a thickness distribution concentrated mainly 
near the leading edge. Unlike other wings, the cI 
.distribution for the Owl wing has an increasing behavior as 
the wing span because the maximum camber coordinate 
zfC)- increases. As a result, the normalized circulation 
distribution has a special shape as indicated in Fig. 40. We 
do not know whether the thin Owl wing and the associated 
aerodynamic properties are related to quiet flight of an owl 
[9]. Clearly, the aerodynamic and aeroacoustic implications 
of the thin Owl wing are worthwhile to be investigated 
further. 

The Seagull and Merganser airfoils are similar to the 
high-lift low Reynolds number airfoil S1223 described by 
Selig et al. [lo]. Figure 41 shows the S1223 airfoil along 
with the Seagull and Merganser airfoils with the same the 
maximum camber line and thickness coordinates 
( z , ~  ,- / c = 0.0852 and z , ,  ,- / c = 0.0579 ). Figures 42 
and 43 shows a comparison of the pressure coefficient 
distributions between the S1223, Seagull and Merganser 
airfoils. These pressure distributions are similar, but the 
S1223 airfoil has lower pressure on the upper surface near 
d c  = 0.2 and trailing edge. The sectional lift coefficient as a 
function of AoA for these airfoils is shown in Fig. 44. When 
AoA increases beyond a certain value (about 10 degrees), 
laminar flow separation will take place near the leading edge 
in a Reynolds number range for birds (4x104 to 7 ~ 1 0 ~ )  
[11,12]. The separated flow may be reattached due to 
transition to turbulence that can be facilitated by using 
artificial boundary layer tripping. Detailed calculation of the 
separatedheattached flow on these airfoils requires a Navier- 
Stokes (N-S) solver with accurate transition and turbulence 
models; computation based on the N-S equation especially 
for the unsteady flow field around a flapping wing is a topic 
in further study. Here, we do not intend to conduct such 
computation without reliable experimental data for 
comparison. Nevertheless, experimental data for the S 1223 
airfoil [ 101 provide a good reference (in a qualitative sense) 
for the behavior of the Seagull and Merganser airfoils at 
high angles of attack. 

, 

6. Avian Wing Kinematics 
6.1. Front-Projected 1/4-Chord Line 

For simplicity, we consider the kinematics of a 
flapping wing as a superposition of the motion of the 1/4- 
chord line of the wing and relative rotation of local airfoil 
sections around the 1/4-chord line. From videos of a level- 
flying bird taken by a camera viewing directly the front of 
the bird, we are able to approximately recover the front- 
projected profiles of the ll4-chord line of the wing at a 
sequence of times. Figure 45 shows a typical image of a 
level-flying crane viewed directly from the front and a local 
coordinate system used for describing the profiles. A front- 
projected wing in images is a line with a finite thickness that 
is approximately considered as the front-projected 1/4-chord 
line. The profile of the front-projected 1/4-chord line of a 

I 

. 
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flapping wing can be reasonably described by a second- 
order polynomial 

2 

-- b / 2  z I / 4  - A , ( u t ) ( ~ ) + A , ( u r ) ( ~ )  , (4) 

where the coefficients and the semi-span are given by the 
Fourier series as a function of the non-dimensional time ut 
(u is the circular frequency of flapping) 

A, ( ut ) = C,, + 
2 

[C,, sin( nwt )+ B,, cos( nwt )], 
n=l  

2 

A,( Ut ) = C,, +E [C,“ sin( n o t  )+ B,, cos( n u t  )I, 
n=l 

b ( u r ) / 2  2 

= C,, + [Cbn sin( n u t  )+ B,  cos( n u t  )] 
mar(b /2 )  n=l  

( 5 )  
Here, bR is defined as the semi-span of an orthographically 
projected flapping wing on the horizontal plane. Therefore, 
bR is a time-dependent function in a flapping cycle. The 
maximum vaiue of 612 is achieved roughly at the moment 
when a flapping wing is parallel to the horizontal plane. We 
assume that u t = 0 corresponds to the position of a wing at 
the beginning of the down-stroke (or the end of the up- 
stroke) (see Fig. 45). 

6.1.1. Crane 
A  time sequence of images of a level-flying crane 

taken by a camera directly from the front of the bird are 
obtained by digitizing a clip of the video “The Life of Birds” 
produced by BBC. The profiles of the front-projected wing 
(or 1/4-chord line) are obtained by manually tracing the 
wing in digitized images. Eq. (4) is used to fit data of the 
successive profiles and the coefficients in Eq. ( 5 )  are 
determined. Figure 46 shows the measured profiles of the 
front-projected 1/4-chord line of a flapping wing of a flying 
crane and the corresponding polynomial fits at six instants 
(an interval of 27r / 5  ) in a flapping cycle w t  E /0,2a]. 
The profiles can be reasonably described by a second-order 
polynomial Eq. (4) with the time-dependent coefficients. 
Figures 47 and 48 show data of the coefficients in Eq. (5 )  
and the orthographically projected semi-span bn that are fit 
by the Fourier series, respectively. The Coefficients in Eq. 
(5 )  extracted from measurements for a flapping wing of a 
crane are 
C,, =0.3639, C,, = -0-2938, B,, =0.4050, 
C,, = -0.0465, B,, = -0.0331 ; 
C,, =-0.4294, C,, = 0.4469, B,, =0.1442, 
C ,  = 0.0135, B,, = 0.0691 ; 
C,, = 0.839, C,, = 0.0885, B,, =0.0301, C,, = -0.0888, 
B,, = -0.0407. 

Figure 48 shows that the orthographically projected 
semi-span bR on the horizontal plane varies with time. At 

6 

ut = 0 ,  the position of the wing is at the beginning of the 
down-stroke. The wing is approximately parallel to the 
horizontal plane at at = 2 and bR reaches the maximal 
value. The minimal value of bR is at ut = 3.9 . The down- 
stroke spans about 62% of a flapping cycle while the up- 
stroke takes 38% of a cycle. The variation of b/2 with time 
depends on not only the orthographic projection, but also a 
change of the wing planform due to wing extension and 
folding during flapping. We calculate the arc length of the 
front-projected 1/4-chord line as a function of time by using 
Eqs. (4) and (5). In fact, a change in the arc length of the 
front-projected 1/4-chord line represents a change of the 
wing planform due to wing extension and folding. Figure 49 
shows the arc length of the projected 1/4-chord line as a 
function of time for the flapping crane, seagull and goose 
wings. For a crane, its wing is most extended at ut = 2.1 
while it is most folded at ut = 4 .  The normalized arc 
length of the front-projected 1/4-chord line is described by 
the Fourier series 

(6)  
For the flapping crane wing, the coefficients in Eq. (6) are 
C,, =0.9310, C,, =0.03.59, B,, = O . O I l l ,  
C,, = -0.0675, B,, = -0.0093. 
This result will be used later to re-construct the wing 
kinematics based on a two-jointed arm model. 

6.1.2. Seagull 
Similarly, a time sequence of images of a flying 

seagull (acquired from 0ceanfootage.com) is processed and 
the profiles of the front-projected 1/4-chord line are 
recovered. The coefficients in Eq. ( 5 )  extracted from 
measurements for a flapping wing of a seagull are 
C,, =0.37.56, C,, =-0.3242, B,,  =0.1920, 
C,, = 0.0412, B,, = -0.1095 ; 
C,, = -0.4674, C,, = 0.3631, B,, =0.2884, 
C,, = -0.0661, B,, = 0.0553 ; 
C ,  = 0.7978 , C,, = 0.1 7.51, B,, = 0.0461 , C,, = 0.0042 , 
B,, = -0.0218. 
Figure 50 shows the measured profiles of the front-projected 
1/4-chord line of a flapping wing of a flying seagull and the 
corresponding polynomial fits at six instants (an interval of 
27c / 9 ) in a flapping cycle. Figures 5 1 and 52 show data of 
the coefficients in Eq. ( 5 )  and the orthographically projected 
semi-span bR that are fit by the Fourier series, respectively. 

For the normalized arc length of the front-projected 
1/4-chord line of the flapping seagull wing, the coefficients 
in Eq. (6) are 
C,, = 0.8718, C,, = 0.1420, B,, =-0.0111, 
C,, =0.0190, B,, =0.0113. 
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As shown in Fig. 49, the flapping seagull wing is most 
extended at w t = 1.3 while it is most folded at w t = 5 . 

6.1.3. Goose 
A time sequence of images of a flying bar-headed 

goose from the documentary “Winged Migration” is 
processed and the profiles of the front-projected 1/4-chord 
line are recovered. The coefficients in Eq. (5) extracted 
from measurements for a flapping wing of a level-flying 
goose are 
C,, = 0.4511, C,, = -0.2819 , B,, =0.3008, 

C,, = -0.4605, C,, =0.4516, B,, =0.1912, 

C,, =0.8999, C,, =0.0666 , B,, =0.0126, 

Figure 53 shows the measured profiles of the front-projected 
1/4-chord line of a flapping wing of a flying goose and the 
corresponding polynomial fits at six instants (an interval of 
n / 5 ) in a flapping cycle. Figures 54 and 55 show data of 
the coefficients in Eq. (5) and the orthographically semi- 
span bL? that are fit by the Fourier series, respectively. 

For the normalized arc length of the front-projected 
1/4-chord line of the flapping goose wing, the coefficients in 
Eq. (6) are 
C,, = 0.9948, C,, = 0.0013, B,, =-0.0013, 

As shown Fig. 49, the normalized arc length of the front- 
projected 1/4-chord line of the flapping goose wing does not 
vary much compared with the flapping crane and seagull 
wings. This means that relatively speaking the goose wing 
does not extend and fold much during flapping. 

C,, = 0.0254 , B,, = -0.0835 ; 

C,, = -0.0845, B,, = 0.1154 ; 

C,, = -0.0505 , B,, = -0.0095. 

C,, =-0.0083, B,, =0.0122. 

6.2. Two-Jointed Arm Model 
In general, the skeleton structure is described as a 

three-jointed arm system. Figure 56 is an X-ray image 
showing the skeleton structure of a seagull wing. However, 
for level flapping flight, the wing kinematics can be 
simplified. In this case, to describe the 1/4-chord line of a 
flapping wing, we use a two-jointed arm model that consists 
of two rigid jointed rods. As shown in Fig. 57, Rod 1 rotates 
around the point 0, in a body coordinate system where the 
origin 0, is located at the wing root and the plane YO, Z is 
defined as the rotational plane of Rod 1. Thus, the motion of 
Rod 1 has only one degree of freedom and the position of 
Rod 1 is given by the flapping angle w, . In contrast, the 
motion of Rod 2 has two degrees of freedom, which is given 
by the angles w2 and q + ~ ~ .  In Fig. 57, the line 0 , T ’  is the 
orthographic projection of the Rod 2 (or the line 0 , T  ) on 
the plane Y 0 , Z .  The angle v2 is the angle between Rod 1 
and the line 0 2 T ‘  on the plane YO,Z,  which basically 

determines the flapping magnitude of Rod 2 relative to Rod 
1. The angle 4, is the angle between Rod 2 and the line 
0,T’ , which describes the extension and folding of a wing 
(the outer portion of a wing). Figure 58 shows the projected 
views of a two-jointed arm system. In Fig. 58(c), the angle 
#21 = 9, / cos( y, - w, ) is the orthographic projection of 
the angle 9, on the horizontal plane X 0 , Y .  The simple 
two-jointed arm model allows the recovery of 3D kinematics 
of a flapping wing from measurements of the front-projected 
1/4-chord line. In addition, it is a straightforward model for 
designing a mechanical flapping wing. 

The coordinates of the end point 0, of Rod 1 are 
X,, = 0, Yo, = L, cos(wI ), Zo2 = L, sin(w, ) ,  (7) 

where L, is the length of Rod 1. The position of Rod 1 is 
described by 

x = o  
Z=Ytan(ry,  ) ’  (8) 

where Y E  [0, L, cos( y, )] . The position of Rod 2 is given 
by 

z=zo2 +(Y-Yo2 ) t a n ( v ,  - w 2 )  

where Y E  [ L ,  cos(tyl ) , b / 2 ] .  Note that b / 2  is the 
orthographically projected semi-span on the horizontal plane 
X 0 , Y .  Therefore, we know that the projected semi-span is 
b /2=L1cos ( t y , )+L ,  c o s ( ( b z ) c o s ( ~ I - ~ 2  ). In a two- 
jointed arm system, the normalized arc length of the front- 
pro-jected 1/4-chord line is 

where r, = L, / max( L,, ) and r, = L, / max( L , ,  ) are 
the relative lengths of Rod 1 and Rod 2. 

6.3. Recovery of the Angles v/,  , w2 and 4, 
A two-jointed arm model uses two pieces of straight 

line to approximate the profile of the 1/4-chord line of a 
wing. Since the flapping angles ty, and yf2 are on the plane 
Y0,Z , they can be estimated directly from the measured 
profile of the front-projected 1/4-chord line, Eq (4), when 
r, = L, / m a (  L,, ) and r2 = L, /ma( L,, ) are given. 

The angle @, can be extracted from the measured arc length 
of the front-projected 1/4-chord line using Eqs. (10) and (6). 
Figures 59, 60 and 61 shows the recovered angles w , ,  w2 
and 9, as a function of time for the flapping crane, seagull 
and goose wings, respectively. 

The angles w , ,  w, and @2 are expressed as the 
Fourier series 
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2 

9, ( ut ) = C,,, + [C,,. sin( n u t  )+ cos( nmt )]. 
"=I  

(11) 
The estimated coefficients in Eq. (1 1) for the crane, seagull 
and goose wings are given below. Here, we assume that 
r, =0.5 and r, =0.5. The units of the angles v,, v/ ,  and 
92 in Eq. (1 1 ) are in degrees. 

Crane 
C,,, = 8.3065, C,,, = -4.4519, 
C,,, = -1.8092 , BVI2 = -0.5889 ; 
C,,, = 17.0661, 
CWz2 = -3.7029, B,,, = -4.5122 ; 

C,,, = -I 7.3404 , 

C,,, = 32.231 I , 
C,22 = 15.2213, B,,,, = 2.6910. 

C,,, = -8.6004 , 

Seagull 
C,,, = 8.4654, 
Cw12 = 1.0898, B,,, = -4.5880 ; 

C,,, = -8.5368, 

C,,, = 17.3083, 
C,, = 1.3128, B,,, = -3.0183 ; 
C020 = 38.41 79 , 

C,,, = -11.0122, 

C,,, = -28.0553, 
C,,, = -4. I032 , B,,, = 3.01 25 . 

Goose 
Cy,, = 12.2528, 
Cy,, = -0.6432 , B,,, = -2.3054 ; 
C,,, = 20.0863, 

C,,, = -3.7150, 

C,,, = -18.6807, 
C,, = 1.3467, B,, = -6.1507 ; 
C,,, = 13.5235, C#,, = 4.7494 , 
CO2, = 4.3138 BO,, = -6.3023. 

ByIl = 25.3910, 

B,,, = -4.0066 , 

B,,, = -0.34280, 

B,,, = 17.8798, 

B,,, = -9.6131, 

B,,, =0.7664, 

B,,, = 21.1873, 

B,,, = -7.3848, 

B,21 = 1.2524, 

6.4. Reconstruction of a Flapping Wing 
After the wing geometry (the airfoil section, 

planform, and twist distribution) and the kinematics of the 
114-chord line of a wing are given, a flapping wing can be 
re-constructed in the 3D physical space by superimposing 
the airfoil sections on the moving 114-chord line. Note that 
the wing twist distribution in flapping is not recovered in 
this paper. Measurements of the dynamical wing twist 
distribution require considerable videogrammetric 
processing on a time sequence of images taken from two 

cameras simultaneously viewing a flapping wing of a level- 
flight bird on which a sufficient number of suitably 
distributed targets are attached. In computational 
simulations, the wing twist can be treated as a variable to 
achieve the maximum aerodynamic efficiency. Here, we 
simply assume that the wing twist is fixed during flapping. 
Using Eqs. (l) ,  (2),  (3), (8), (9) and (11) with the known 
coefficients for a seagull wing, we re-construct a flapping 
seagull wing at different instants as shown in Fig. 62. 

6. Conclusions 
Using a 3D laser scanner, we have measured the 

surface geometry of the Seagull, Merganser, Teal and Owl 
wings. From measurements, the airfoil camber line, airfoil 
thickness distribution, wing planform and twist distribution 
are extracted. The accuracy of metric measurements using 
the laser scanner is about 0.041mm. The residual of least- 
squares fitting for an airfoil section is about 2 - l O ~ l O - ~  in 
terms of the normalized coordinate dc .  The estimated 
coefficients for the camber line and thickness distribution do 
not exhibit a systematic behavior along the wing span. 
Thus, the averaged values of these coefficients along the 
wing span are given, which define the averaged airfoil for an 
avian wing. The deviation of the local airfoil camber line 
and thickness distribution from the averaged ones is about 5- 
20% of their maximum value. The Seagull and Merganser 
airfoils are similar to high-lift low Reynolds number airfoils. 
The Teal airfoil has a relatively symmetric thickness 
distribution around the mid-chord. The Owl airfoil is very 
thin over 0.3-1.0 chord and the thickness distribution is 
mainly concentrated in the front portion of the airfoil. 
Unlike other wings, the Owl wing has a special circulation 
distribution along the wing span. 

We consider the kinematics of a flapping wing as a 
superposition of the motion of the 114-chord line of the wing 
and relative rotation of local airfoil sections around the 1/4- 
chord line. The profiles of the front-projected 114-chord line 
at different instants are measured from videos of a level- 
flying bird. Then, based on a two-jointed arm model, the 
kinematics of the 114-chord line in the 3D physical space is 
recovered for the flapping Crane, Seagull and Goose wings. 
The relevant quantities of the wing kinematics are given in 
convenient analytical expressions. The wing geometry and 
kinematics given in this paper are useful for the design of 
flapping MAVs and experimental and computational studies 
to understand the fundamental aerodynamic aspects of 
flapping flight. 
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S3 
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-0.807 0.7366 -0.3677 -0.8497 

-15.246 -23.1743 1.7804 -47.683 I 
0.771 1.840 0.0239 -2.723 

. 
A2 
A3 
G 

Table 1. The Coefficients for Avian Airfoil 

Si  1 3.8735 1 3.9385 I 3.9917 I 3.9733 
I Seagull 1 Merganser I Teal I Owl 

26.482 58.3057 -13.6875 124.5329 
-1 8.975 -64.3674 18.276 - 127.0874 
4.6232 25.7629 -8.279 45.876 

El 
E7 

Seagull Merganser Teal Owl 
26.08 39.1 -66.1 6.3421 
-209.92 -323.8 435.6 -7.5 178 

Table 2. The Coefficients for Wing Planform 

~~ 1 E3 I 637.21 I 978.7 I -1203.0 I -70.9649 1 
E4 I -945.68 1 -1417.0 1 1664.1 I 188.0651 
E, I 695.03 I 1001.0 I -1130.2 I -160.1678 

Figure 1.  3D la\er scanner and F.4RO arm for wing surface 
measurements. 

-v 
Figure 2. Data cloud of the surface of a seagull wing. 

Figure 3. The Seagull wing. 
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(b) 
Figure 4. (a) The coefficients for the camber line, (b) The 
coefficients for the thickness distribution for the Seagull 
wing. 
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Figure 5 .  The camber line and thickness distribution of the 
Seagull wing. 
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Figure 7. The maximum camber and thickness coordinates 
as a function of the spanwise location for the Seagull wing. 
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Figure 8. The planform of the Seagull wing. 
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Figure 10. The twist distribution of the Seagull wing. 
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Figure 12. The Merganser wing. 
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Figure 1 1. The generated surface of the Seagull wing. 
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(b) 
Figure 15. (a) Least-squares residuals of fitting the airfoil 
sections, (b) Deviation of local profiles from the averaged 
profile for the Merganser wing. 
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Figure 16. The maximum camber and thickness coordinates 
as a function of the spanwise location for the Merganser 
wing. 
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Figure 17. The planform of the Merganser wing. 
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Figure 24. The planform of the Teal wing. 
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Figure 25. The chord distribution of the Teal wing. 
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Figure 26. The generated surface of the Teal wing. 

Figure 27. The Owl wing. 
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Figure 28. The camber line and thickness distribution of the 
Owl wing. 
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Figure 29. The maximum camber and thickness coordinates 
as a function of the spanwise location for the Owl wing. 
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Figure 30. The planform of the Owl wing. 

16 

? 
.. ' . 

0.5 

s o  

-0.5 
1 

, 

Figure 32. The generated surface of the Owl wing. 



AIAA Paper 2004-2 186 Liu et al. 

' . 2 ~  1 

0.8 - 
Teal 

0.6 

e 
N Merganser 

0.2 Seagull 1 

I 2 y h  = 0.4 

1 I I I 

1 
-0.2 ' 

0 0.2 0.4 0.6 0.8 
XfC 

Figure 33. Airfoil sections of the avian wings at 2 y h  = 0.4. 
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Figure 34. The pressure coefficient distributions of the 
Seagull wing at different angles of attack. 
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Figure 35. The pressure coefficient distributions of the 
Merganser wing at different angles of attack. 
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Figure 36. The pressure coefficient distributions of the Teal 
wing at different angles of attack. 
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Figure 37. The pressure coefficient distributions of the Owl 
wing at different angles of attack. 
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Figure 38. The sectional lift coefficient as a function of the 
angles of attack. 
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Figure 39. The sectional lift coefficient distributions along 
the wing span for the Seagull, Merganser, Teal and Owl 
wings 21 P , C A  n degee. 
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Figure 40. The normalized circulation distributions along the 
wing span for the Seagull, Merganser, Teal and Owl wings. 
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Figure 41. The high-lift low Reynolds airfoil S1223 
compared to the Seagull and Merganser airfoils with the 
same maximum camber line and thickness coordinates. 
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Figure 42. The pressure coefficient distributions for the 
Seagull and Merganser airfoils along with that for S1223 at 
AoA = 0 degree. 
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Figure 43. The pressure coefficient distributions for the 
Seagull and Merganser airfoils along with that for S1223 at 
AoA = 5 degrees. 

3 

c 
C 
a, 
0 2  
E 
a, 

.- 

8 

2 
5 1  

c 
'c 
-I - 
0 

a, 
(0 

.- 

0 

-A- Merganser 

I I I I I I I I 
- 6 - 4 - 2  0 2 4 6 8 1 0  

AoA (deg) 
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Figure 46. The profiles of the front-prqjected 1/4-chord line 
of the flapping crane wing at different instants. 
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Figure 48. Tie onhographicaiiy projecred semi-span b Z  
normalized by rnax(b/?) for the flapping crane wing as a 
function of time. 
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Figure 49. The normalized arc length of the front-projected 
114-chord line of the flapping crane, seagull and goose wings 
as a function of time. 

Figure 47. The polynomial coefficients of the front-projected 
1/4-chord line of the flapping crane wing as a function of 
time. 
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Figure 50. The profiles of the front-projected 1/4-chord line 
of the flapping seagull wing at different instants. 
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Figure 5 1. The polynomial coefficients of the front-projected 
114-chord line of the flapping seagull wing as a function of 
time. 
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Figure 52. The orthographically projected semi-span b/2 
normalized by max(b/2) for the flapping seagull wing as a 
function of time. 
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Figure 53. The profiles of the front-projected 114-chord line 
of the flapping goose wing at different instants. 
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Figure 54. The polynomial coefficients of the front-projected 
1/4-chord line of the flapping goose wing as a function of 
time. 
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Figure 55. The orthographically projected semi-span bn 
normalized by rnax(W2) for the flapping goose wing as a 
function of time. 
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Figure 56. An X-ray image of a seagull wing. 
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Figure 57. Two-jointed arm system. 
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Figure 58. Projected views of a two-jointed arm system. (a) 
top view, (b) side view, (c) the meaning of the angle & .  
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Figure 60. The angles y, , vz and G2 as a function of time 
for the seagull wing. 
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Figure 61. The angles w, , wz and & as a function of time 
for the goose wing. 
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Figure 59. The angles y, , y2 and 
for the crane wing. 

as a function of time 
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Figure 62. Reconstructed flapping seagull wing at w t = 0, 

n / 4 ,  n/2,3n/4 and K .  
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